Independent component analysis for tensor-valued data
نویسندگان
چکیده
منابع مشابه
Rank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملIndependent component analysis for noisy data -- MEG data analysis
Independent component analysis (ICA) is a new, simple and powerful idea for analyzing multi-variant data. One of the successful applications is neurobiological data analysis such as electroencephalography (EEG), magnetic resonance imaging (MRI), and magnetoencephalography (MEG). However, many problems remain. In most cases, neurobiological data contain a lot of sensor noise, and the number of i...
متن کاملComplex-Valued Data Envelopment Analysis
Data Envelopment Analysis (DEA) is a nonparametric approach for measuring the relative efficiency of a decision making units consists of multiple inputs and outputs. In all standard DEA models semi positive real valued measures are assumed, while in some real cases inputs and outputs may take complex valued. The question is related to measuring efficiency in such cases. As far as we are aware, ...
متن کاملComplex-Valued Independent Component Analysis of Natural Images
Linear independent component analysis (ICA) learns simple cell receptive fields fromnatural images.Here,we show that linear complexvalued ICA learns complex cell properties from Fourier-transformed natural images, i.e. two Gabor-like filters with quadrature-phase relationship. Conventional methods for complex-valued ICA assume that the phases of the output signals have uniform distribution. We ...
متن کاملIndependent component analysis and (simultaneous) third-order tensor diagonalization
Comon’s well-known scheme for independent component analysis (ICA) is based on the maximal diagonalization, in a least-squares sense, of a higher-order cumulant tensor. In a previous papr, we proved that for fourth-order cumulants, the computation of an elementary Jacobi rotation is equivalent to the computation of the best rank-1 approximation of a fourth-order tensor. In this paper, we show t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2017
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2017.09.008